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Distributed Averaging With Random
Network Graphs and Noises

Tao Li , Senior Member, IEEE, and Jiexiang Wang

Abstract— We consider a discrete-time distributed averaging
algorithm over multi-agent networks with measurement noises
and time-varying random graphs. Each agent updates its state by
a weighted sum of pairwise state differences between its neighbors
and itself with both additive and multiplicative measurement
noises. The network structure is modeled by a sequence of
time-varying random digraphs, which may be spatially and tem-
porally dependent. By stochastic Lyapunov method and the com-
bination of algebraic graph theory and martingale convergence
theory, we obtain sufficient conditions for stochastic approxi-
mation type algorithms to achieve mean square and almost sure
average consensus. We prove that all states of the agents converge
to a common random variable, whose mathematical expectation is
the average of initial values, in mean square and almost surely if
the sequence of digraphs is conditionally balanced and uniformly
conditionally jointly connected. An upper bound of the variance
of the limit random variable, that is, the mean square steady-state
error for stochastic average consensus is given quantitatively
related to the weights, the algorithm gain and the energy level
of the noises.

Index Terms— Distributed averaging, multi-agent system,
additive and multiplicative noise, time-varying random graph.

I. INTRODUCTION

IN REAL networked systems, there exist various kinds of
uncertain factors, such as channel noises, channel fading,

random link failures and recreations. In recent years, stochastic
multi-agent networks have attracted great attentions from
scholars in various fields and become an active interdisci-
plinary research subject. For stochastic multi-agent networks,
distributed averaging is one of the most fundamental problems
and has wide application background, such as distributed
computation [1], [2], distributed filtering [3], [4], information
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fusion over wireless sensor networks [5], distributed learning
and optimization [6], [7], load balancing [8], etc.

Measurement or communication noises affect not only the
decision-making of each individual agent, but also the over-
all performance of the whole system. Generally, measure-
ment or communication noises are divided into two categories:
additive and multiplicative noises. Additive noise corrupts
signals in the form of superposition regardless of signals’
own intensities, while, multiplicative noise has a different
mechanism which can be represented by its coupling with
signals. For example, the effects of coherent fading in imaging
radar systems can be modeled by multiplicative noises [10].
For distributed averaging with additive measurement noises,
Huang and Manton [11] proposed a discrete-time stochastic
approximation type average-consensus protocol, and gave suf-
ficient conditions for mean square consensus under fixed undi-
rected graphs. Li and Zhang [12] studied a continuous-time
distributed averaging algorithm with additive measurement
noises and obtained necessary and sufficient conditions for
mean square average-consensus under fixed balanced digraphs.
For distributed averaging with multiplicative measurement
noises, Li et al. [13] considered average consensus under fixed
undirected graphs with nonlinear noise intensity functions,
and gave necessary and sufficient conditions for mean square
average consensus. Ni and Li [14] considered distributed con-
sensus with multiplicative measurement noises where the noise
intensities are absolute values of relative states.

Besides measurement and communication noises, the struc-
ture of a multi-agent network often randomly changes due
to packet dropouts, link/node failures or recreations, which
are particularly serious for wireless networks. The random
switching of network structures has a strong impact on
convergence and performance of distributed averaging algo-
rithms. This topic also attracts extensive attentions from
the community of distributed averaging. Distributed averag-
ing and consensus with a sequence of independent iden-
tically distributed (i.i.d.) graphs were studied in[15]–[20].
Especially, Bajović et al. [19] proved that the product of
i.i.d. symmetric stochastic matrices converges exponentially
in probability. The cases with ergodic stationary and finite
state homogeneous Markov chain type graph sequences were
analyzed in [21] and [22], respectively, which both obtained
necessary and sufficient conditions for almost sure consen-
sus. Liu et al. [23] and Touri and Nedic [24] studied distrib-
uted consensus with more general random graph sequences.
Liu et al. [23] obtained sufficient conditions for the pth order
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moment of pairwise state differences to vanish by using
the jointly-containing-spanning-tree type condition. Touri and
Nedic [24] gave a more general condition for the convergence
of weak periodic random matrix sequences.

Most of the above literature considered the effect of ran-
dom changing of network structures or measurement noises
on distributed algorithms separately. In real networks, vari-
ous kinds of uncertainties may co-exist. For example, there
may exist additive measurement noises and channel fad-
ing accompanied with random link changes. Many scholars
have long been committed to developing distributed averag-
ing algorithms with comprehensive uncertainties, establishing
convergence conditions and quantitative relations between
algorithm performances and network parameters. However,
the theory of distributed averaging algorithms with all the
random uncertainties mentioned above is still to be developed.
Li and Zhang [25] considered distributed averaging with addi-
tive measurement or communication noises and deterministic
switching graphs. They established a necessary and sufficient
condition for mean square average consensus under fixed
digraphs and the jointly-containing-spanning-tree type condi-
tion for mean square and almost sure average consensus under
switching digraphs. Rajagopal and Wainwright [26] studied
distributed averaging with additive storage noises, additive
communication noises and data-constrained communication.
Kar and Moura [27] gave sufficient conditions for almost
sure consensus under a Markov chain type graph sequence
with a fixed mean graph and additive measurement noises.
Huang et al. [28] considered the case with spatial-temporal-
independent additive measurement noises and random link
gains under Markov and deterministic switching network
graphs. They obtained sufficient conditions for mean square
and almost sure consensus. Aysal and Barner [29] proposed
a model of general consensus dynamics and gave conditions
for almost sure convergence under additive disturbances and
randomly switching graphs. Patterson et al. [30] considered
distributed averaging with spatial-temporal-independent ran-
dom link failures and random input noises. They gave the
exponential mean square convergence rate for mean square
average-consensus assuming that the underlying mean graph
is always undirected and connected. Wang and Elia [31]
focused on the system fragilities caused by communication
constraints (additive input noises, communication delay and
fading channels). They established a tight relationship among
uncertainties of network channels, robust mean square stability
and the appearance of Lev́y flight. They gave conditions for
the difference between each pair of nodes’ states vanishing
in mean square, without additive input noises. Furthermore,
Wang and Elia [32] studied how the model parameters affect
the appearance of complex behaviour and provided an expres-
sion to verify system stability. Long et al. [33] considered
distributed consensus with multiplicative noises and randomly
switching graphs assuming that the mean graph is fixed and
connected.

In this paper, we propose a discrete-time multi-agent dis-
tributed averaging algorithm with both additive and mul-
tiplicative measurement noises under time-varying random
graphs. A time-varying algorithm gain is adopted to attenuate

the noises. By stochastic Lyapunov method and the combi-
nation of algebraic graph theory and martingale convergence
theory, we obtain sufficient conditions for the distributed
approximation type algorithm to achieve mean square and
almost sure average consensus. We prove that all states of
the agents converge to a common random variable in mean
square and almost surely if the sequence of random graphs
is conditionally balanced and uniformly conditionally jointly
connected. The mathematical expectation of the variable is the
average of initial states of the agents. Moreover, we give an
upper bound of the variance of the limit random variable, that
is, the mean square steady-state error for stochastic average
consensus, which is quantitatively related to the edge weights,
the algorithm gain, the number of agents, the agents’ initial
states, the second-order moment and the intensity coefficients
of the noises. Some preliminary results on distributed averag-
ing with additive and multiplicative noises under fixed graphs
have been presented in [34]. Compared with the relevant
literature, main contributions of our paper are summarized as
follows.

I. The measurement model covers both cases with addi-
tive and multiplicative noises. Different from the case with
only multiplicative noises, due to the introduction of the
time-varying algorithm gain to attenuate additive noises,
the dynamic network associated with the algorithm becomes a
time-varying stochastic system. The exponential convergence
of stochastic Lyapunov energy function, which is essential
to obtain the almost sure consensus conditions in [13], [14],
and [33], cannot be used. Besides, different from the case with
only additive measurement noises [11], [12], [25], multiplica-
tive noises relying on the relative states between agents make
states and noises coupled together in a distributed information
structure. This leads to the fact that the martingale term
induced by noises is coupled with states and network graphs
in the system centroid equation. The estimation for the term
results in more complex analysis for mean square steady-state
error. To these ends, we further develop stochastic Lyapunov
method. Firstly, by martingale convergence theory, we prove
the boundedness of mean square consensus error. Then we
obtain mean square average consensus from the result of sub-
stituting the boundedness back into the difference inequality
of Lyapunov function. Furthermore, by tools of martingale
convergence theory, we obtain almost sure average consensus.
It is worth pointing out that though Wang and Elia [31], [32]
considered both additive input noises and Bernoulli fading
channels, they used fixed algorithm gain and ensured that the
pairwise state differences vanish in mean square in absence of
the additive input noises. In addition, different from the most
existing literature, the noises in this paper are allowed to be
spatially and temporally dependent.

II. In [34], the network graph is assumed to be fixed,
balanced and strongly connected. In this way, the property
of the Laplacian matrix of a connected graph can be directly
used to get the contractive property of Lyapunov energy
function. While this paper studies the case with time-varying
random graphs, and the network graph is neither connected
nor balanced instantaneously. Thus, the method of [34] is
not applicable. In this paper, stochastic Lyapunov method is
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further developed for the case with a sequence of random
graphs. In Huang [35], the lengths of the time intervals,
over which the network is jointly connected, can randomly
vary but must be bounded with probability one. The network
graph condition given in [35] is essentially a deterministic
type condition. However, for a sequence of random graphs,
it is very difficult to verify whether its sample paths satisfy
such kind of conditions with probability one. Particularly,
the sample paths of Markovian switching graphs do not satisfy
those conditions. In this paper, the network structure among
agents is modeled by more general random graph sequences.
The generalized weighted adjacency matrices are not required
to have special statistical properties, such as independency
with identical distribution, Markovian switching or station-
arity, etc. By introducing the concept of conditional digraph
and martingale convergence theory, we establish the uniformly
conditionally joint connectivity condition to ensure stochastic
average consensus. The joint connectivity conditions with
respect to a sequence of i.i.d. graphs, Markovian and deter-
ministic switching graphs in the existing literature are all
special cases of our condition. Different from [25], which
assumed that the digraphs are balanced, we only require that
the conditional digraph is balanced; and different from [27]
and [33], we do not require a fixed mean graph. Moreover,
compared with [34], we do not require the instantaneous
balance of the network graph. This leads to an additional
martingale term in the system centroid equation, which needs
more complex estimation by martingale convergence theory.

III. In real networks, there exist not only cooperative, but
also antagonistic relations between agents [36]– [38]. Such
relations can be modeled by links with positive or negative
weights, respectively. Among most of the existing literature on
distributed averaging, nonnegative edge weights are required.
Liu et al [23] and Touri and Nedic [24] studied noise-free
consensus algorithms under random graph sequences, and
required nonnegative edge weights. Porfiri and Stilwell [15]
considered noise-free distributed consensus with arbitrary
weights in a sampled-data setting, however, the network graph
sequence is required to be i.i.d. and the mean graph is always
connected. In this paper, we show that under the uniformly
conditionally joint connectivity condition, even though the
random edge weights take negative values at some time
instants, mean square and almost sure consensus can also be
achieved.

The remaining parts of this paper are arranged as follows.
Section II gives preliminaries and problem formulation. Sec-
tions III and IV give main results and the proof of the main
theorem. In Section V, for two special cases of Markovian
switching graph sequences with countable states and inde-
pendently switching graph sequences with uncountable states,
the sufficient conditions for mean square and almost average
consensus are given. Section VI presents some numerical
examples to demonstrate the theoretical results. Section VII
gives concluding remarks and some future topics.

Notation and symbols:
1N : N-dimensional vector with all ones;
0N , N-dimensional vector with all zeros;
IN : N-dimensional identity matrix;

Om×n : m × n dimensional zero matrix;
R: set of real numbers;
A ≥ B: matrix A − B is positive semi-definite;
A � B: matrix A − B is a nonnegative matrix;
AT : transpose of matrix A;
diag(B1, . . . , Bn): block diagonal matrix with entries being
B1,…,Bn;
‖A‖: 2-norm of matrix A;
‖A‖F : Frobenius-norm of matrix A;
P{A}: probability of event A;
E[ξ ]: mathematical expectation of random variable ξ ;
V ar(ξ): variance of ξ ;
|S|: the cardinal number of set S;
�x�: the minimal integer greater than or equal to real
number x ;
�x�: the maximal integer smaller than or equal to x ;
bn = O(rn): lim supn→∞

|bn |
rn

< ∞, where {bn , n ≥ 0} is a
real sequence and {rn , n ≥ 0} is a positive real sequence;
bn = o(rn): limn→∞ bn

rn
= 0;

bn = �(rn): lim supn→∞
|bn |
rn

< ∞ and lim infn→∞ |bn |
rn

> 0;
Fη(k) = σ(η( j), 0 ≤ j ≤ k), k ≥ 0, Fη(−1) = {�, ∅}, where
{η(k), k ≥ 0} is a random vector or matrix sequence.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries

Let the triple G = {V, EG,AG} be a weighted digraph,
where V = {1, . . . , N} is the node set with node i rep-
resenting agent i ; EG is the edge set, and ( j, i) ∈ EG
if and only if agent j can send information to agent i
directly. Denote the neighborhood of agent i by Ni = { j ∈
V|( j, i) ∈ EG}. We call AG = [ai j ] ∈ R

N×N the generalized
weighted adjacency matrix of G, where aii = 0, and ai j �=
0 ⇔ j ∈ Ni . Since EG is uniquely determined by AG ,
the digraph can also be denoted by the pair G = {V,AG}.
The in-degree and out-degree of agent i are denoted by
degin(i) =∑N

j=1 ai j and degout(i) =∑N
j=1 a j i , respectively.

We call LG = DG − AG the generalized Laplacian matrix
of G, where DG = diag(degin(1), . . . , degin(N)). By the
definition, LG1N = 0N . If degin(i) = degout(i), ∀ i ∈ V ,
then G is balanced. We call G̃ = {V, EG̃,AG̃} the reversed
digraph of G, where (i, j) ∈ EG̃ if and only if ( j, i) ∈ EG
and AG̃ = AT

G . Then, Ĝ = {V, EG ∪EG̃,
AG+AT

G
2 } is called the

symmetrized graph of G. Denote L̂G = LG+LT
G

2 . If ai j ≥ 0,
∀ i , j ∈ V , then the generalized weighted adjacency matrix
AG and the generalized Laplacian matrix LG degenerate to
the weighted adjacency matrix and Laplacian matrix in usual
sense, respectively. And L̂G is the Laplacian matrix of Ĝ if
and only if G is balanced [39].

The union digraph of G1 = {V, EG1,AG1} and G2 =
{V, EG2,AG2} with the common node set V is denoted by
G1 +G2 = {V, EG1 ∪EG2 ,AG1 +AG2}. By the definition of LG ,
we know that L∑k

j=1 G j
= ∑k

j=1 LG j . A sequence of edges

(i1, i2), (i2, i3), …, (ik−1, ik) is called a directed path from
i1 to ik . If for all i , j ∈ V , there exists a directed path from i
to j , then G is strongly connected.
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B. Problem Formulation

Consider a multi-agent system of N agents whose informa-
tion structure is described by a sequence of random digraphs
with the identical node set {G(k) = {V,AG(k)}, k ≥ 0}.
We consider the following distributed averaging algorithm:

xi (k + 1) = xi (k) + c(k)
∑

j∈Ni (k)

ai j (k)(y j i(k) − xi (k)),

k ≥ 0, i ∈ V, (1)

where xi (k) ∈ R is the state of agent i at time instant k,
and xi (0), i = 1, 2, . . . , N are the initial values. Here,
Ni (k) denotes the neighborhood of agent i at time instant k,
c(k) is the time-varying algorithm gain, and y j i(k) denotes
the measurement of agent j ’s state by its neighboring node i
at time instant k, which is given by

y j i(k)= x j (k)+ f j i(x j (k)−xi(k))ξ j i (k), i ∈V, j ∈Ni (k).

(2)

where {ξ j i (k), k ≥ 0} is the measurement noise sequence
on channel ( j, i) and f j i (x j (k) − xi (k)) is the noise
intensity function. The combination of (1) and (2) is
called the distributed stochastic approximation type con-
sensus algorithm [11], [25], [27]. Let ξ(k) = [ξ11(k), . . . ,
ξN1(k); . . . ; ξ1N (k), . . . , ξN N (k)]T , where ξ j i (k) ≡ 0 if j /∈
Ni (k) for all k ≥ 0.

Remark 1: The information structure of the network is
modeled by a stochastic process, i.e., a sequence of ran-
dom digraphs {G(k, ω) = {{1, 2, . . . , N},AG(k,ω)}, k ≥ 0},
where ω is a sample point of some sample space �. For
a fixed ω, {G(k, ω) = {{1, 2, . . . , N},AG(k,ω)}, k ≥ 0}
is a sequence of deterministic digraphs, and for a fixed
k ≥ 0, G(k, ω) = {{1, 2, . . . , N},AG(k,ω)} is a random

element, where A(k, ω)
�= AG(k,ω) = [ai j (k, ω)]N×N is an

N-dimensional random matrix with zero diagonal elements.
Especially, if ai j (k, ω) = a j i(k, ω), i, j = 1, 2, . . . , N , and
ai j (k, ω), i = 2, . . . , N , j = 1, 2, . . . ., i −1 are i.i.d 0−1 val-
ued random variables with the probability P{ω : a12(k, ω) =
1} = pk , then G(k, ω) is the Erdös-Rényi random graph model
G(N, pk) [40]. Since there is a one to one correspondence
between G(k, ω) and A(k, ω), the random graph sequence can
also be viewed as a sequence of N-dimensional random matrix
with zero diagonal elements. In stochastic process theory,
the sample point ω is usually omitted. Besides the Erdös-Rényi
random graph model, the readers may referred to [41] for more
random graph models.

We introduce the concept of conditional digraphs. We call
E[AG(k)|FA(m)], m ≤ k − 1, the conditional general-
ized weighted adjacency matrix of AG(k) with respect to
FA(m), and call its associated random graph the conditional
digraph of G(k) with respect to FA(m), denoted by G(k|m),
i.e., G(k|m) = {V, E[AG(k)|FA(m)]}. In this paper, we con-
sider the sequence of balanced conditional digraphs as follows:

�1 =
{
{G(k), k ≥ 0}|E[AG(k)|FA(k − 1)] � ON×N a.s.,

G(k|k − 1) is balanced a.s., k ≥ 0
}
.

For the measurement model (2) and the algorithm gain c(k),
we have the following assumptions.

(A1) For the noise intensity function f j i (·): R → R, there
exist nonnegative constants σ j i and b j i , i , j ∈ V , such that∣
∣ f j i (x)

∣
∣ ≤ σ j i |x | + b j i , ∀ x ∈ R.

(A2) The noise process {ξ(k),Fξ (k), k ≥ 0} is a
sequence of vector-valued martingale differences and there
exists a positive constant β such that supk≥0 E[‖ξ(k)‖2|
Fξ (k − 1)] ≤ β a.s.

(A3) c(k) > 0, ∀ k ≥ 0,
∑∞

k=0 c(k) = ∞,
∑∞

k=0 c2(k) < ∞.
(A4) c(k) decreases monotonously, c(k) = O(c(k + h)),

k → ∞, ∀ h = 0, 1, 2, . . .
Remark 2: Assumption (A1) shows that the measurement

model (2) covers both cases of additive and multiplica-
tive measurement noises. Here, b j i , i , j ∈ V and σ j i ,
i , j ∈ V are additive and multiplicative noise intensity
coefficients, respectively. The measurement models with addi-
tive noises in [11], [12], and [25] and those with multiplica-
tive noises in [13], [14], and [33] are both special cases of
model (2). In detail, the measurement model in [25] is
y j i(k) = x j (k) + ξ j i(k), j ∈ Ni (k). The measurement
model in [13] is y j i(k) = x j (k) + f j i (x j (k) − xi (k))ξ j i (k),
j ∈ Ni (k), where | f j i (x j (k) − xi (k))| ≤ σ j i |x j (k) − xi (k)|.
The measurement model in [14] and [33] is y j i(k) = x j (k) +
σ j i |x j (k) − xi (k)|ξ j i(k), j ∈ Ni (k). Obviously, all the noise
intensity functions of the above three kinds of models all
satisfy (A1).

Remark 3: In Assumption (A2), we assume that the overall
noises constitute a martingale difference sequence without the
requirement that the noises are spatial-temporal independent
as in the most existing literature [13], [14], [28], [31]– [33].
This weaker assumption leads to difficulties in analyzing the
algorithm, where the coupled term of states and noises cannot
be simply separated as the case with independent noises.
If {ξ(k), k ≥ 0} is an independent zero mean sequence
with bounded second-order moments, then Assumption (A2)
holds.

Remark 4: Existing literature showed that a fixed algorithm
gain can ensure strong consensus [13], [14], [33] if only mul-
tiplicative measurement noises are considered. Here, we adopt
the decaying algorithm gain c(k) to attenuate the additive
noises. In the field of distributed algorithms, Assumption (A3)
ensures that c(k) vanishes with a proper rate for attenuating
noises and meanwhile the algorithm does not converge too
early. If c(k) decreases monotonically, and there are constants
γ ∈ (0.5, 1] and β ≥ −1, c1 > 0, c2 > 0, such that for

sufficiently large k, c1lnβ
(k)

kγ ≤ c(k) ≤ c2lnβ
(k)

kγ , then both
Assumptions (A3) and (A4) hold.

We have the following assumption on the random graph
sequence and the measurement noises.

(A5) The random graph sequence {G(k), k ≥ 0} and the
noise process {ξ(k), k ≥ 0} are mutually independent.

Remark 5: Here, Assumption (A5) requires that the graph
sequence and the measurement noises are mutually inde-
pendent. And different from the most existing works on
distributed averaging under random network graphs, here,
neither the graph sequence nor the process of measurement
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noises is required to be spatially or temporally independent.
For the case with time-invariant random graphs, Porfiri and
Stilwell [15] and Hatano and Mesbahi [18] assumed inde-
pendent channels. For the case with time-varying random
graphs, Boyd et al. [16], Kar and Moura [17], Tahbaz-Salehi
and Jadbabaie [20] and Long et al. [33] assumed that {G(k),
k ≥ 0} is a sequence of independent random graphs. These
spatial or temporal independency requirements cannot be
always satisfied for real networks. Take a sensor network
as the example. On the spatial scale, if a sensor node fails
due to battery exhausted, then all channels between this
node and its neighbors become inactive. This would happen
randomly and the statistics of channels associated with this
node are obviously spatially dependent. On the temporal scale,
the unreliability of channels would increase due to aging
of sensors as time goes on. Thus, the statistics of channels
are also temporally dependent. In this paper, we do not
require the spatial and temporal independency of the network
graphs, which can cover more practical cases besides those
in [15]–[18], [20], and [33]. To remove the independency
between the noise process and the graph sequence would be
more interesting and challenging.

Let X (k) = [x1(k), · · · , xN (k)]T , D(k) = diag(αT
1 (k),

· · · , αT
N (k)) with αT

i (k) being the i th row of AG(k), Y (k) =
diag ( f1(k), · · · , fN (k)), where fi (k) = diag( f1i(x1(k) −
xi (k)), · · · , fNi (xN (k) − xi (k))). Substituting (2) into (1)
leads to the dynamic system associated with the algorithm (1)
and (2) in the compact form

X (k + 1) = (IN − c(k)LG(k))X (k) + c(k)D(k)Y (k)ξ(k). (3)

Remark 6: In [29], the dynamic system is described by
x(t + 1) = A(t)x(t) + B(t)m(t), where {x(s) : s ≤ t}
is independent of A(t), B(t) and m(t) for all t ≥ 0; and
the disturbance process m(t) is independent of B(t). This
assumption obviously fails for our model (3).

Definition 1 [25]: Stochastic average consensus: for the
system (1) and (2), if for any given X (0) ∈ R

N , there exists
a random variable x∗, such that E(x∗) = 1

N

∑N
j=1 x j (0),

V ar(x∗) < ∞, limk→∞ E[xi (k) − x∗]2 = 0, i ∈ V , and
limk→∞ xi(k) = x∗ a.s., i ∈ V , then we say that the
system (1) and (2) achieves mean square and almost sure
average consensus.

For consensus algorithms with random noises and randomly
switching graphs, generally, the state limit is not a deter-
ministic value but becomes some random variable [25]– [28].
Definition 1 is a generalization of the concept of deterministic
average-consensus in [39]. Due to the stochastic uncertainties
in the network, the limit value of the states is not the exact
average 1

N

∑N
j=1 x j (0), but becomes a random variable with

its mathematical expectation being 1
N

∑N
j=1 x j (0) and its

variance characterizing mean square steady-state error.
In this paper, we aim at giving the conditions under which

the system (1) and (2) achieves mean square and almost sure
average consensus based on the models formulated above,
i.e., the random digraph sequence and the measurement model
with both additive and multiplicative noises. The following
section gives the main result.

III. MAIN RESULTS

Let JN = 1
N 11T and PN = IN − JN . Denote the consensus

error vector δ(k) = PN X (k) and the Lyapunov energy function
V (k) = ‖δ(k)‖2. For any given k ≥ 0 and positive integer h,
denote

λh
k = λ2

(
k+h−1∑

i=k

E[L̂G(i)|FA(k − 1)]
)

, (4)

where λ2(·) denotes the second smallest eigenvalue. Since
E[L̂G(i)|FA(k −1)] is a real symmetric matrix a.s., λh

k is well
defined.

We are now in the position for the main result.
Theorem 1: For the system (1)-(2) and the associated ran-

dom graph sequence {G(k), k ≥ 0} ∈ �1, assume that
(a) Assumptions (A1)-(A5) hold;
(b) there exist deterministic positive integer h and positive

constants θ and ρ0, such that (b.1) infm≥0 λh
mh ≥ θ a.s.; (b.2)

supk≥0

[
E[‖LG(k)‖2max{h,2} |FA(k − 1)]

] 1
2max{h,2} ≤ ρ0 a.s.

Then, as k → ∞, the consensus error δ(k) vanishes in mean
square and almost surely. Moreover, all states xi (k), i ∈ V ,
converge to a common random variable x∗, in mean square
and almost surely, with E(x∗) = 1

N

∑N
j=1 x j (0) and

V ar(x∗) ≤ 4cβb2ρ1

N2 + 8̃cβσ 2ρ1

N2 + 2cρ2 qx

N
, (5)

where

c =
∞∑

k=0

c2(k), c̃ =
∞∑

k=0

E[V (k)]c2(k),

σ = max
1≤i, j≤N

{σ j i}, b = max
1≤i, j≤N

{b j i},

qx = exp
{

cρ2
0

} (
‖X (0)‖2 + 2cβρ1(2σ 2 qv + b2)

)
,

qv = exp
{

c(ρ2
0 + 4ρ1βσ 2)

} (
‖δ(0)‖2 + 2cβρ1b2

)
,

ρ1 and ρ2 are constants satisfying

sup
k≥0

E

[

|EG(k)| max
1≤i, j≤N

a2
i j (k)|FA(k − 1)

]

≤ ρ1 a.s.

max
1≤i≤N

sup
k≥0

E

[( N∑

j=1

ai j (k)

−
N∑

j=1

a j i(k)

)2∣∣
∣
∣FA(k − 1)

]

≤ ρ2 a.s.

Remark 7: Most of existing literature on consensus-based
distributed algorithms assumed that the edge weights, i.e., the
entries of AG(k), are nonnegative. In Theorem 1, we assume
that {G(k), k ≥ 0} ∈ �1, which implies that the entries
of E[AG(k)|FA(k − 1)] are nonnegative almost surely. This
relaxation makes the algorithm more flexible at the price of
more difficult analysis, since LG(k) is not a Laplacian matrix
anymore and some properties of Laplacian matrices are not
applicable.

Remark 8: We call Condition (b.1) infm≥0 λh
mh ≥ θ

a.s. the uniformly conditionally joint connectivity condition,
i.e., the conditional digraphs G(k|k − 1) are jointly connected
over the intervals [mh, (m + 1)h − 1], m ≥ 0, and the average
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algebraic connectivity is uniformly positive bounded away
from zero.

Remark 9: The inequality (5) gives an upper bound of
the mean square steady-state error. There are three terms
on the right hand side of (5), which reflect the impacts of
additive noises, multiplicative noises and the instantaneous
unbalance of network graph on the final steady-state error,
respectively. If the network graph is instantaneously balanced,
i.e.,

∑N
j=1 ai j (k) = ∑N

j=1 a j i(k), i = 1, 2, . . . , N , a.s., then
the third term vanishes. Especially, if the measurement noise
sequence {ξ j i (k), k = 0, 1, . . . , i, j = 1, 2 . . . , N} are both
spatially and temporally independent, then from (44), we get

V ar(x∗) ≤ 4cβb2ρ1

N2 + 8̃cβσ 2ρ1

N2 , (6)

where ρ1 is a positive constant satisfying supk≥0 max1≤i, j≤N

E
[
a2

i j (k)|FA(k − 1)
]

≤ ρ1, a.s. Moreover, if β = O(N)

and ρ1 = O(1) as N → ∞, then V ar(x∗) = O(1/N),
N → ∞, which means that the larger the number of sensors
is, the higher the accuracy of information fusion is. At the
same time, a sensor network with a large number of nodes
is definitely uneconomic, so there is a trade-off between the
performance of the estimation and the cost of the system for
selecting the number of nodes.

If the network graph is instantaneously balanced (ρ2 = 0)
and the measurement noise intensities are all zeros
(b = σ = 0), then from (5), we get V ar(x∗) = 0, which
means x∗ = 1

N

∑N
j=1 x j (0) almost surely and Theorem 1

degenerates to the case for noise-free average consensus with
balanced digraphs in [39].

IV. PROOF OF THEOREM 1

To prove Theorem 1, firstly, we prove that the distance
between each agent’s state and the centroid of the system
vanishes in mean square and almost surely asymptotically.
Secondly, we prove that the centroid of the system converges
in mean square and almost surely, which then means that each
agent’s state converges to the same random variable. Finally,
we prove that the mathematical expectation of the limit random
variable is just the average of the initial states and estimate its
variance. Before proving Theorem 1, we have the following
two lemmas, which also present some important properties of
the consensus error themselves. Lemma 1, whose conditions
are weaker than Theorem 1, shows that the mean square of
the consensus error, i.e., the distance between each agent’s
state and the centroid of the system, is bounded. Lemma 2
shows that the consensus error vanishes in mean square and
almost surely. Lemma 1 plays important roles in the proofs of
Lemma 2 and Theorem 1.

Lemma 1: For the system (1)-(2) and the associated random
graph sequence {G(k), k ≥ 0} ∈ �1, if Assumptions (A1)-(A3)
and (A5) hold and there exists a positive constant ρ1 such that
supk≥0 E

[
|EG(k)| max1≤i, j≤N a2

i j (k)|FA(k − 1)
]

≤ ρ1 a.s.,
then the system (3) satisfies supk≥0 E[V (k)] < ∞.

Proof : By (3) and the definition of δ(k), we have

δ(k + 1) = PN (IN − c(k)LG(k))X (k)

+ c(k)PN D(k)Y (k)ξ(k)

= δ(k) − c(k)PN LG(k) X (k)

+ c(k)PN D(k)Y (k)ξ(k).

By the definition of LG(k), it follows that LG(k) JN = ON×N ,
and thus LG(k) X (k) = LG(k)δ(k). Then from the above,
we have

δ(k + 1) = (IN − c(k)PN LG(k))δ(k)

+ c(k)PN D(k)Y (k)ξ(k), (7)

which together with the definition of V (k) leads to

V (k + 1) ≤ V (k) − 2c(k)δT (k)
LT
G(k) PT

N + PN LG(k)

2
δ(k)

+ c2(k)‖LG(k)‖2‖δ(k)‖2

+ c2(k)ξT (k)Y T (k)DT (k)PN D(k)Y (k)ξ(k)

+ 2c(k)ξT (k)Y T (k)DT (k)PN

× (IN − c(k)PN LG(k))δ(k). (8)

We now consider the mathematical expectation of each term
on the RHS of (8). By Lemma A.1 and Assumption (A2),
we know that

E[ξT (k)Y T (k)DT (k)PN (IN − c(k)PN LG(k))δ(k)] = 0. (9)

Noting that G(k|k − 1) is balanced a.s., by Assumption (A5),
we get

E

[ LT
G(k) PT

N + PN LG(k)

2

∣
∣
∣
∣Fξ,A(k − 1)

]

= E

[ LT
G(k) PT

N + PN LG(k)

2

∣
∣
∣
∣FA(k − 1)

]

= E[L̂G(k)|FA(k − 1)] ≥ ON×N a.s.,

and then, by δ(k) ∈ Fξ,A(k − 1), we have

E

[

δT (k)
LT
G(k) PT

N + PN LG(k)

2
δ(k)

]

≥ 0. (10)

By Assumption (A1) and the definitions of Y (k) and V (k),
we get

‖Y (k)‖2 = max
1≤i, j≤N

(
f j i (x j (k) − xi (k))

)2

≤ max
1≤i, j≤N

[2σ 2(x j (k) − xi (k))2 + 2b2]

≤ 4σ 2 max
1≤ j,i≤N

[(
x j (k) −

∑N
i=1 xi (k)

N

)2

+
(

xi (k) −
∑N

i=1 xi (k)

N

)2
]

+ 2b2

≤ 4σ 2
N∑

j=1

(
x j (k) −

∑N
i=1 xi (k)

N

)2 + 2b2

= 4σ 2V (k) + 2b2, (11)
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where the first “≤” is by Assumption (A1) and the definition
of Y (k) while the last “=” is by the definition of V (k).
By Assumptions (A2), the definition of Y (k) and (1), we know
that Y (k) is adapted to FA,ξ (k − 1), then by (A5) and
Lemma A.1, we have

E[ξT (k)Y T (k)DT (k)PN D(k)Y (k)ξ(k)]
≤ E[‖Y (k)‖2‖ξ(k)‖2‖DT (k)D(k)‖]
= E[E[‖Y (k)‖2‖ξ(k)‖2‖DT (k)D(k)‖|FA,ξ (k − 1)]]
= E[‖Y (k)‖2 E[‖ξ(k)‖2|Fξ (k − 1)]

× E[‖DT (k)D(k)‖|FA(k − 1)]]
which together with (11) and Assumption (A2) leads to

E[ξT (k)Y T (k)DT (k)PN D(k)Y (k)ξ(k)]
≤ E[‖Y (k)‖2‖ξ(k)‖2‖DT (k)D(k)‖]
≤ β E[(4σ 2V (k) + 2b2)E[‖DT (k)D(k)‖|FA(k − 1)]]
= β E[(4σ 2V (k) + 2b2)

× E[λmax(DT (k)D(k))|FA(k − 1)]]
= β E

[

(4σ 2V (k) + 2b2)

× E

[

max
1≤i≤N

λmax(αi (k)αT
i (k))|FA(k − 1)

]]

= β E

[

(4σ 2V (k) + 2b2)

× E

[

max
1≤i≤N

tr(αT
i (k)αi (k))|FA(k − 1)

]]

≤ β E

[

(4σ 2V (k) + 2b2)

× E

[

|EG(k)| max
1≤i, j≤N

a2
i j (k)|FA(k − 1)

]]

≤ 4σ 2βρ1 E[V (k)] + 2b2βρ1. (12)

From the above, taking the mathematical expectation on both
sides of (8), by (9), (10) and supk≥0 E

[
|EG(k)| max1≤i, j≤N

a2
i j (k)|FA(k − 1)

]
≤ ρ1 a.s., we get

E[V (k + 1)] ≤ [1 + c2(k)(ρ2
0 + 4βσ 2ρ1)]E[V (k)]

+ 2b2βρ1c2(k), k ≥ 0. (13)

This together with Assumption (A3) and Lemma A.2 gives
that E[V (k)] is bounded (regarding E[V (k)] as x(k) in
Lemma A.2). �

Lemma 2: For the system (1)-(2) and the associated ran-
dom graph sequence {G(k), k ≥ 0} ∈ �1, assume that
(a) Assumptions (A1)-(A5) hold; (b) there exist deterministic
positive integer h, positive constants θ and ρ0, such that
(b.1) infm≥0 λh

mh ≥ θ a.s., (b.2) supk≥0

[
E[‖LG(k)‖2max{h,2} |

FA(k − 1)]
] 1

2max{h,2} ≤ ρ0 a.s. Then, limk→∞ E[V (k)] = 0
and limk→∞ V (k) = 0 a.s.

Proof : Let �(m, n) = (IN − c(m −
1)PN LG(m−1)) · · · (IN − c(n)PN LG(n)), m > n ≥ 0,
�(n, n) = IN , n ≥ 0. By (7) and some iterative calculations,
we get

δ((m + 1)h) = �((m + 1)h, mh)δ(mh) + ξ̃mh
m , m ≥ 0,

where

ξ̃mh
m =

(m+1)h−1∑

j=mh

c( j)�((m + 1)h, j + 1)

× PN D( j)Y ( j)ξ( j). (14)

From the definition of V (k), it follows that

V ((m + 1)h)

= δT (mh)�T ((m + 1)h, mh)�((m + 1)h, mh)δ(mh)

+ (ξ̃mh
m )T (ξ̃mh

m )

+ 2δT (mh)�T ((m + 1)h, mh)ξ̃mh
m

= δT (mh)
[
�T ((m + 1)h, mh)�((m + 1)h, mh) − IN

+
(m+1)h−1∑

i=mh

c(i)[PN LG(i) + LT
G(i) PT

N ]
]
δ(mh)

+ V (mh)

− δT (mh)

(m+1)h−1∑

i=mh

c(i)[PN LG(i) + LT
G(i) PT

N ]δ(mh)

+ (ξ̃mh
m )T (ξ̃mh

m )

+ 2δT (mh)�T ((m + 1)h, mh)ξ̃mh
m . (15)

We now consider the mathematical expectation of each term
on the RHS of (15). Noting that δ(mh) ∈ Fξ,A(mh−1), by the
properties of conditional expectation, we know that

E

[

δT (mh)�T ((m + 1)h, mh)

× �((m + 1)h, j + 1)PN D( j)Y ( j)ξ( j)

]

= E
[
δT (mh)E

[
�T ((m + 1)h, mh)�((m + 1)h, j + 1)

× PN D( j)Y ( j)ξ( j)|Fξ,A( j − 1)
]]

,

mh ≤ j ≤ (m + 1)h − 1, m ≥ 0. (16)

By Assumptions (A2), (A5) and Lemma A.1, we have

E

[

�T ((m + 1)h, mh)�((m + 1)h, j + 1)

× PN D( j)Y ( j)ξ( j)|Fξ,A( j − 1)

]

= E

[

�T ((m + 1)h, mh)�((m + 1)h, j + 1)

× PN D( j)|Fξ,A( j − 1)

]

Y ( j)E[ξ( j)|Fξ,A( j − 1)]

= E

[

�T ((m + 1)h, mh)�((m + 1)h, j + 1)

× PN D( j)|FA( j − 1)

]

Y ( j)E[ξ( j)|Fξ( j − 1)]
= 0N×N , mh ≤ j ≤ (m + 1)h − 1, m ≥ 0,

where the second “=” is obtained from (A5) and Lemma A.1.
This together with (14) and (16) gives

E
[
δT (mh)�T ((m + 1)h, mh)ξ̃mh

m

]
= 0. (17)
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By Assumptions (A3) and (A4), there exist positive integer m0
and positive constant C1, such that c2(mh) ≤ C1c2((m +1)h),
∀ m ≥ m0, and c(k) ≤ 1, ∀ k ≥ m0h. By Condition (b.2) and
the conditional Lyapunov inequality, we obtain that

sup
k≥0

E[‖LG(k)‖i |FA(k − 1)]

≤ sup
k≥0

[E[‖LG(k)‖2h |FA(k − 1)]] i
2h ≤ ρi

0 a.s., ∀ 2≤ i ≤2h .

(18)

Denote the combinatorial number of choosing i elements from
2h elements by Mi

2h . By termwise multiplication and using
the Hölder inequality repeatedly, noting that c(mh) decreasing
monotonously as m increases and E[‖LG(k)‖l |FA(mh −1)] =
E[E[‖LG(k)‖l |FA(k −1)]|FA(mh −1)], 2 ≤ l ≤ 2h , k ≥ mh,
from (18), we have

E
[∥
∥
∥�T ((m + 1)h, mh)�((m + 1)h, mh) − IN

+
(m+1)h−1∑

i=mh

c(i)(PN LG(i) + LT
G(i) PT

N )
∥
∥
∥
∣
∣
∣FA(mh − 1)

]

≤
(

C1

2h∑

i=2

Mi
2hρi

0

)
c2((m + 1)h)

= C1[(1 + ρ0)
2h − 1 − 2hρ0]c2((m + 1)h),

m ≥ m0. (19)

Denote the symmetrized graph of G(i |mh − 1) by
Ĝ(i |mh − 1), mh ≤ i ≤ (m + 1)h − 1. Noting that G(i |i − 1)
is balanced a.s., we know that G(i |mh − 1) is balanced
a.s. Then, E[L̂G(i)|FA(mh − 1)] is the Laplacian matrix of
Ĝ(i |mh − 1), a.s., mh ≤ i ≤ (m + 1)h − 1. Therefore,∑(m+1)h−1

i=mh E[L̂G(i)|FA(mh − 1)] is the Laplacian matrix of
∑(m+1)h−1

i=mh Ĝ(i |mh − 1) a.s.. Furthermore, by Assumption
(A5) and Lemma A.1, we have

E

[

δT (mh)

[ (m+1)h−1∑

i=mh

c(i)(PN LG(i)

+ LT
G(i) PT

N )

]

δ(mh)

]

= 2E

[

δT (mh)

[ (m+1)h−1∑

i=mh

c(i)E[L̂G(i)|Fξ,A(mh − 1)]
]

× δ(mh)

]

= 2E

[

δT (mh)

[ (m+1)h−1∑

i=mh

c(i)E[L̂G(i)|FA(mh − 1)]
]

× δ(mh)

]

,

which together with Assumption (A4) and Condition (b.1)
leads to

E

[

δT (mh)

[ (m+1)h−1∑

i=mh

c(i)(PN LG(i) + LT
G(i) PT

N )

]

δ(mh)

]

≥ 2c((m + 1)h)E

[

δT (mh)

×
[ (m+1)h−1∑

i=mh

E[L̂G(i)|FA(mh − 1)]
]

δ(mh)

]

≥ 2c((m + 1)h)E
[
λh

mh V (mh)
]

≥ 2c((m + 1)h)E

[

inf
m≥0

(λh
mh)V (mh)

]

≥ 2θc((m + 1)h)E[V (mh)] a.s. (20)

By Assumptions (A2), (A5) and Lemma A.1, it follows that

E[ξT (i)Y T (i)DT (i)PN �T ((m + 1)h, i + 1)

× �((m + 1)h, j + 1)PN D( j)Y ( j)ξ( j)]
= E[E[ξT (i)Y T (i)DT (i)PN �T ((m + 1)h, i + 1)

× �((m + 1)h, j + 1) | Fξ,A(i − 1)]PN D( j)Y ( j)ξ( j)]
= E[E[ξT (i)Y T (i) | Fξ,A(i − 1)]

× E[DT (i)PN �T ((m + 1)h, i + 1)

× �((m + 1)h, j + 1) | FA(i − 1)]PN D( j)Y ( j)ξ( j)]
= E[E[E[ξT (i) | Fξ (i − 1)]Y T (i) | Fξ,A(i − 1)]

× E[DT (i)PN �T ((m + 1)h, i + 1)

× �((m + 1)h, j + 1) | FA(i − 1)]PN D( j)Y ( j)ξ( j)]
= 0, i > j,

which together with the definition of ξ̃mh
m gives

E[(ξ̃mh
m )T (ξ̃mh

m )]

=
(m+1)h−1∑

i=mh

c2(i)E[ξT (i)Y T (i)DT (i)PN

×�T ((m + 1)h, i + 1)�((m + 1)h, i + 1)

× PN D(i)Y (i)ξ(i)]

≤
(m+1)h−1∑

i=mh

c2(i)E[‖�T ((m + 1)h, i + 1)

× �((m + 1)h, i + 1)‖‖DT (i)D(i)‖‖Y (i)‖2‖ξ(i)‖2]

=
(m+1)h−1∑

i=mh

c2(i)E[‖Y (i)‖2 E[‖�T ((m + 1)h, i + 1)

× �((m + 1)h, i + 1)‖‖DT (i)D(i)‖ | FA(i − 1)]
× E[‖ξ(i)‖2|Fξ (i − 1)]]. (21)

By Condition (b.2), there is a constant ρ′
1 such that

sup
k≥0

[
E[‖DT (k)D(k)‖2|FA(k − 1)]

]1/2 ≤ ρ′
1 a.s.,

which together with the conditional Hölder inequality and
Cr-inequality leads to

E[‖�T ((m + 1)h, i + 1)�((m + 1)h, i + 1)‖
× ‖DT (i)D(i)‖|FA(i − 1)]

≤ ρ′
1{E[‖�T ((m + 1)h, i + 1)

× �((m + 1)h, i + 1)‖2|FA(i − 1)]} 1
2

≤ ρ′, mh ≤ i ≤ (m + 1)h − 1, m ≥ m0,
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where ρ′ = ρ′
1

{(∑2(h−1)
j=0 M j

2(h−1)

)∑2(h−1)
l=0 Ml

2(h−1)ρ
2l
0

} 1
2
.

Then, by (11), (21) and the above, we get

E[(ξ̃mh
m )T (ξ̃mh

m )]

≤ ρ′
(m+1)h−1∑

i=mh

c2(i)E[4σ 2V (i)E[‖ξ(i)‖2 | Fξ (i − 1)]

+ 2b2 E[‖ξ(i)‖2 | Fξ (i − 1)]]

≤ 4σ 2βρ′
(m+1)h−1∑

i=mh

c2(i)E[V (i)]

+ 2b2βρ′
(m+1)h−1∑

i=mh

c2(i), m ≥ m0. (22)

Finally, by (15), (17), (19), (20) and (22), we have

E[V ((m + 1)h)]
≤
(

1 − 2θc((m + 1)h)

+ c2((m + 1)h)C1[(1 + ρ0)
2h − 1 − 2hρ0]

)

E[V (mh)]

+ 4σ 2βρ′
(m+1)h−1∑

i=mh

c2(i)E[V (i)]

+ 2b2βρ′
(m+1)h−1∑

i=mh

c2(i), m ≥ m0. (23)

We call (23) the difference inequality of stochastic Lyapunov
function. Now we first prove that E[V (mh)] → 0, m → ∞,
and then prove that V (k) → 0, k → ∞ a.s. By (23), Lemma 1
and (23), we have

E[V ((m + 1)h)]
≤ (1 − 2θc((m + 1)h)

+ c2((m + 1)h)C1[(1 + ρ0)
2h − 1 − 2hρ0])E[V (mh)]

+ C2

(m+1)h−1∑

i=mh

c2(i), m ≥ m0, (24)

where C2 = (4σ 2 supk≥0 E[V (k)] + 2b2)βρ′.
By Assumption (A3), there exists positive integer m1 such

that

0 < 2θc((m + 1)h) − c2((m + 1)h)C1[(1 + ρ0)
2h

− 1 − 2hρ0] ≤ 1, ∀ m ≥ m1, (25)

and
∞∑

m=0

{2θc((m + 1)h)

− c2((m + 1)h)C1[(1 + ρ0)
2h − 1 − 2hρ0]}

= ∞. (26)

And by Assumption (A4), we get

lim
m→∞

{[

C2

(m+1)h−1∑

i=mh

c2(i)

]

/[2θc((m + 1)h)

− c2((m + 1)h)C1[(1 + ρ0)
2h − 1 − 2hρ0]]

}

= 0. (27)

Then by Lemma A.3 and (24)-(27), we get E[V (mh)] → 0,
m → ∞. Thus, for any given � > 0, there exists posi-
tive integer m2 such that E[V (mh)] < �, m ≥ m2, and∑∞

i=m2h c2(i) < �. Let mk = � k
h �. Then for any given

k ≥ m2h, we have mk ≥ m2 and 0 ≤ k −mkh ≤ h. Therefore,
by (13) we have

E[V (k + 1)]

≤
k∏

i=mk h

[1 + c2(i)(ρ2
0 + 4ρ1βσ 2)]E[V (mkh)]

+ 2ρ1b2β

k∑

i=mk h

k∏

j=i+1

[1 + c2( j)(ρ2
0 + 4ρ1βσ 2)]c2(i)

≤ exp((ρ2
0 + 4ρ1βσ 2)

∞∑

i=0

c2(i))(1 + 2ρ1b2β)�, k ≥ m2h,

(28)

where
∏k

j=k+1[1+(ρ2
0 +4ρ1βσ 2)c2( j)] is defined as 1. Then,

by the arbitrariness of �, we get

E[V (k)] → 0, k → ∞. (29)

Taking conditional expectation on both sides of (8) gives

E[V (k + 1)|Fξ,A(k − 1)]
≤ [1 + c2(k)(ρ2

0 + 4σ 2ρ1β)]V (k) + 2b2ρ1βc2(k).

Then, by Lemma A.2 and Assumption (A3), we obtain

V (k) → a finite random variable, k → ∞ a.s.,

which together with (29) gives V (k) → 0, k → ∞ a.s. �
Proof of Theorem 1: Firstly, if Condition (b.2) holds, noting

that

|EG(k)| max
1≤i, j≤N

a2
i j (k)

0 ≤ N(N − 1) max
1≤i, j≤N

a2
i j (k) ≤ N(N − 1)‖‖LG(k)‖2

F ,

by the equivalence of 2-norm and Frobenius norm of matrices
and the conditional Lyapunov inequality, we know that the
deterministic constants ρ1 and ρ2 are both well defined.
Secondly, by Lemma 2, we directly get that δ(k) vanishes in
mean square and almost surely as k → ∞. Then, this theorem
is proved by three Steps as follows.

Step 1: To prove that all xi (k), i ∈ V converge to x∗ as
k → ∞ in mean square and almost surely.

Let L̃G(k) = LG(k)−E[LG(k)|FA(k−1)], k ≥ 0. Noting that
the associated digraph of Laplacian matrix E[LG(k)|FA(k−1)]
is balanced a.s., we know that 1T E[LG(k)|FA(k − 1)] = 0T

N
a.s. Left multiplying with 1

N 1T
N on both sides of (3), and then

making a summation from 0 to n−1 with respect to k, we have

1

N

N∑

j=1

x j (n) = 1

N

N∑

j=1

x j (0) − 1

N
1T

n−1∑

k=0

c(k)LG(k)X (k)

+ 1

N
1T

n−1∑

k=0

c(k)D(k)Y (k)ξ(k)
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= 1

N

N∑

j=1

x j (0) − 1

N
1T

n−1∑

k=0

c(k)L̃G(k) X (k)

+ 1

N
1T

n−1∑

k=0

c(k)D(k)Y (k)ξ(k). (30)

Noting that

E[L̃G(m+i) X (m + i)|Fξ,A(m)]
= E[E[L̃G(m+i) X (m + i)|Fξ,A(m)]|Fξ,A(m + i − 1)]
= E[E[L̃G(m+i) X (m + i)|Fξ,A(m + i − 1)]|Fξ,A(m)]
= E[E[L̃G(m+i)|Fξ,A(m + i − 1)]X (m + i)|Fξ,A(m)],

1 ≤ i ≤ n − m − 1,

by the definition of L̃G(k) and Assumption (A5), it is known
that E[L̃G(k)|Fξ,A(k − 1)] = E[L̃G(k)|FA(k − 1)] = ON×N ,
k ≥ 0. Thus, from the above equality, we get

E[L̃G(m+i) X (m + i)|Fξ,A(m)] = 0N , 1 ≤ i ≤ n − m − 1,

which gives

E

[ n−1∑

k=0

L̃G(k) X (k)

∣
∣
∣
∣Fξ,A(m)

]

= E

[ m∑

i=0

L̃G(i) X (i)

∣
∣
∣
∣Fξ,A(m)

]

+ E

[ n−1∑

i=m+1

L̃G(i) X (i)

∣
∣
∣
∣Fξ,A(m)

]

= E

[ m∑

i=0

L̃G(i) X (i)

∣
∣
∣
∣Fξ,A(m)

]

, ∀ m < n − 1.

This together with the definition of martingales implies{
1
N 1T

N

∑n
k=0 c(k)L̃G(k)X (k), Fξ,A(n), n ≥ 0

}
is a martingale.

On the other hand, by (30), we know that

sup
n≥0

E

∥
∥
∥
∥
∥

n−1∑

k=0

c(k)L̃G(k) X (k)

∥
∥
∥
∥
∥

2

≤ sup
n≥0

n−1∑

k=0

c2(k)E[‖X (k)‖2‖L̃G(k)‖2]

≤ sup
k≥0

E[‖L̃G(k)‖2|FA(k − 1)]

× sup
k≥0

E‖X (k)‖2
∞∑

k=0

c2(k). (31)

By Condition (b.2), we know that

sup
k≥0

E[‖L̃G(k)‖2|FA(k − 1)] < ∞ a.s. (32)

From (3), (12) and Condition (b.2), we get

E[‖X (k + 1)‖2]
= E[X T (k)(IN − c(k)LT

G(k))(IN − c(k)LG(k))X (k)]
+ c2(k)E[ξT (k)Y T (k)DT (k)D(k)Y (k)ξ(k)]

≤ E[‖X (k)‖2] + c2(k)E[‖X (k)‖2‖LG(k)‖2]

+ c2(k)E[‖Y (k)‖2‖ξ(k)‖2‖DT (k)D(k)‖]
≤ E[‖X (k)‖2] + c2(k)ρ2

0 E[‖X (k)‖2]
+ c2(k)βρ1 E[4σ 2V (k) + 2b2]

≤ (1 + c2(k)ρ2
0 )E[‖X (k)‖2]

+ βρ1(4σ 2 sup
k≥0

E[V (k)] + 2b2)c2(k), (33)

where the second term in the second inequality is by Condi-
tion (b.2), and the third term is similar to (12). This together
with Lemma 1, Lemma A.2 and Assumption (A3) gives
supk≥0 E[‖X (k)‖2] < ∞. Then, by (31) and (32), we know
that

sup
n≥0

E

∥
∥
∥
∥
∥

n−1∑

k=0

c(k)L̃G(k) X (k)

∥
∥
∥
∥
∥

2

< ∞.

This together with Lemma A.4 leads to the fact that

1

N
1T

N

n−1∑

k=0

c(k)L̃G(k)X (k)

converges a.s. and in mean square. (34)

From Assumptions (A2) and (A5), it follows that

E

[
n−1∑

k=0

c(k)D(k)Y (k)ξ(k)|Fξ,A( j)

]

=
j∑

k=0

c(k)D(k)Y (k)ξ(k) +
n−1∑

k= j+1

E[E(c(k)D(k)

× Y (k)ξ(k)|Fξ,A(k − 1))|Fξ,A( j)]

=
j∑

k=0

c(k)D(k)Y (k)ξ(k),∀ j < n − 1.

Thus, the adaptive sequence
{∑n

j=0 c(k)DG(k)Y (k)ξ(k),
Fξ,A(n), n ≥ 0

}
is a martingale. Then, by (11) and Con-

dition (b.2), we have

sup
n≥0

E

∥
∥
∥
∥
∥

n−1∑

k=0

c(k)D(k)Y (k)ξ(k)

∥
∥
∥
∥
∥

2

= sup
n≥0

n−1∑

k=0

E
[
c2(k)ξT (k)Y T (k)DT (k)D(k)Y (k)ξ(k)

]

≤ β sup
k≥0

E[‖DT (k)D(k)‖|FA(k − 1)]

× sup
n≥0

n−1∑

k=0

c2(k)E‖Y (k)‖2

≤ βρ1 sup
n≥0

n−1∑

k=0

c2(k)(4σ 2 E[V (k)] + 2b2).

By Assumption (A3), the boundedness of E[V (k)] and the
above, we get

sup
n≥0

E

∥
∥
∥
∥
∥

n−1∑

k=0

c(k)D(k)Y (k)ξ(k)

∥
∥
∥
∥
∥

2

< ∞,
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which together with Lemma A.4 gives

1

N
1T

N

n−1∑

k=0

c(k)D(k)Y (k)ξ(k) converges,

k → ∞ a.s. and in mean square. (35)

Finally, by (30), (34) and (35) we know that

1

N

N∑

j=1

x j (n) → x∗, n → ∞ a.s. and in mean square,(36)

where

x∗ = 1

N

N∑

j=1

x j (0) − 1

N
1T

N

∞∑

k=0

c(k)L̃G(k)X (k)

+ 1

N
1T

N

∞∑

k=0

c(k)D(k)Y (k)ξ(k). (37)

Then, by the definition of V (k), Lemma 2 and (36), we have

xi (k) → x∗, k → ∞, a.s. and in mean square, i ∈ V .

Step 2: To compute the mathematical expectation of x∗.
By (34), we have

E

[
1

N
1T

N

∞∑

k=0

c(k)L̃G(k)X (k)

]

= lim
n→∞ E

[
1

N
1T

N

n−1∑

k=0

c(k)L̃G(k)X (k)

]

= 0.

Similarly, by (35), we have

E

[
1

N
1T

N

∞∑

k=0

c(k)D(k)Y (k)ξ(k)

]

= lim
n→∞ E

[
1

N
1T

N

n−1∑

k=0

c(k)D(k)Y (k)ξ(k)

]

= 0.

This together with (37) gives

E(x∗) = 1

N

N∑

j=1

x j (0). (38)

Step 3: To estimate the variance of x∗.
From (13), by iterative calculations, we have

E[V (k + 1)] ≤
k∏

i=0

[1 + (ρ2
0 + 4βσ 2ρ1)c

2(i)]V (0)

+ 2ρ1b2β

k∑

i=0

c2(i)
k∏

j=i+1

[1

+ (ρ2
0 + 4βσ 2ρ1)c

2( j)], (39)

where
∏k

j=k+1[1+(ρ2
0 +4βσ 2ρ1)c2( j)] = 1. Actually, for all

k ≥ j , we have
∏k

i= j (1 + (ρ2
0 + 4βσ 2ρ1)c2(i)) ≤ exp

(
(ρ2

0 +
4βσ 2ρ1)

∑k
i= j c2(i)

)
≤ exp

(
(ρ2

0 + 4βσ 2ρ1)
∑∞

i=0 c2(i)
)

.
This together with (39) leads to

sup
k≥0

E[V (k)] ≤ qv . (40)

Similarly, by (33) and the above, we have

E‖X (k + 1)‖2

≤ (1 + c2(k)ρ2
0 )E‖X (k)‖2 + βρ1(4σ 2 qv + 2b2)c2(k)

≤ qx . (41)

Then, by (34), (35), (37), (38), the dominated convergence
theorem and Cr-inequality, we have

V ar(x∗)

= E

[
1

N
1T

N

∞∑

k=0

c(k)D(k)Y (k)ξ(k)

− 1

N
1T

N

∞∑

k=0

c(k)L̃G(k)X (k)

]2

≤ 2E
[ 1

N
1T

N

∞∑

k=0

c(k)D(k)Y (k)ξ(k)
]2

+ 2E
[ 1

N
1T

N

∞∑

k=0

c(k)L̃G(k) X (k)
]2

≤ 2 lim
n→∞ E

[ 1

N
1T

N

n−1∑

k=0

c(k)L̃G(k)X (k)
]2

+ 2 lim
n→∞ E

[ 1

N
1T

N

n−1∑

k=0

c(k)D(k)Y (k)ξ(k)
]2

. (42)

For the first term on the right hand side of (42), noting that{
1T

N

∑n
k=0 c(k)L̃G(k)X (k), Fξ,A(n), n ≥ 0

}
is a martingale,

we have

lim
n→∞ E

[
1

N
1T

N

n−1∑

k=0

c(k)L̃G(k)X (k)

]2

= 1

N2 lim
n→∞

n−1∑

k=0

{

c2(k)E
[
1T

N L̃G(k) X (k)
]2
}

= 1

N2 lim
n→∞

n−1∑

k=0

{

c2(k)E
[
1T

N LG(k) X (k)
]2
}

= 1

N2 lim
n→∞

n−1∑

k=0

{

c2(k)E

[ N∑

i=1

xi (k)
( N∑

j=1

ai j (k)

−
N∑

j=1

a j i(k)
)]2}

≤ 1

N
lim

n→∞

n−1∑

k=0

{

c2(k)

N∑

i=1

E

[

x2
i (k)

( N∑

j=1

ai j (k)

−
N∑

j=1

a j i(k)
)2
]}

≤ ρ2

N

∞∑

k=0

c2(k)E‖X (k)‖2 ≤ ρ2qx

N

∞∑

k=0

c2(k), (43)

where the second “=” is by the definition of L̃G(k) and
{G(k), k ≥ 0} ∈ �1, the first “≤” is by Cr-inequality and
the second is by (41).
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For the second term, noting that
{
1T

N

∑n
j=0 c(k)D(k)

Y (k)ξ(k), Fξ,A(n), n ≥ 0
}

is a martingale, direct calculations
gives

lim
n→∞ E

[
1

N
1T

N

n−1∑

k=0

c(k)D(k)Y (k)ξ(k)

]2

= 1

N2 lim
n→∞ E

[
n−1∑

k=0

(1T
N c(k)D(k)Y (k)ξ(k))2

]

≤ 1

N2 lim
n→∞

n−1∑

k=0

c2(k)E

[ ∑

1≤i, j≤N

ξ j i (k)ai j (k)

×(σ j i (x j (k) − xi (k)) + b j i)

]2

. (44)

Then by Cr-inequality, Assumptions (A2), (A5) and
Lemma A.1, we have

lim
n→∞ E

[ 1

N
1T

N

n−1∑

k=0

c(k)D(k)Y (k)ξ(k)
]2

≤ 1

N2

∞∑

k=0

{

c2(k)
∑

(i, j )∈EG(k)

E
[
|EG(k)|ξ2

j i (k)a2
i j (k)

×(σ j i (x j (k) − xi (k)) + b j i)
2
]}

≤ 2

N2

∞∑

k=0

{

c2(k)
∑

(i, j )∈EG(k)

E
[
|EG(k)|ξ2

j i (k)a2
i j (k)

×(σ 2
j i (x j (k) − xi (k))2 + b2

j i)
]}

≤ 2βb2ρ1

N2

∞∑

k=0

c2(k)

+ 4βσ 2ρ1

N2

∞∑

k=0

E[V (k)]c2(k), (45)

where the first “≤” is by Cr-inequality, and the last ‘≤” is
by Assumptions (A2), (A5) and Lemma A.1. This together
with (42) and (43) gives (5). �

Remark 10: The constant c̃ in (5) and (6) can be replaced
by qvc from the estimation (40). This removes the term
E[V (k)] in c̃, however, makes the upper bound of the mean
square steady-state error more conservative.

Remark 11: Lemma 1 plays important roles in the proof of
Theorem 1.

• In [34], the network is assumed to be a fixed, balanced
and strongly connected digraph. Then the property of the
Laplacian matrix of a connected graph was directly used
to the first-order difference inequality of the Lyapunov
energy function. For the case with time-varying ran-
dom graphs of this paper, the network graph is neither
connected nor balanced instantaneously, and thus the
method of [34] is not applicable. We further develop the
stochastic Lyapunov method for the case with a sequence
of random graphs and compound noises. By Lemma 1,
the high-order difference inequality (23), where E[V (i)]

i = mh + 1,…,(m + 1)h − 1 are involved, is transformed
into the h-step ahead first-order difference inequality (24).

• The system centroid equation (30) is different
from those in [34] and [25]. First, the term
1
N 1T ∑n−1

k=0 c(k)D(k)Y (k)ξ(k) induced by the noises is
coupled with the state and the random graph sequence.
Second, there is an additional term 1

N 1T ∑n−1
k=0 c(k)L̃G(k)

X (k) induced by the instantaneous unbalance of the
network graph. By Lemma 1, we prove that the
sequences {1T ∑n−1

k=0 c(k)D(k)Y (k)ξ(k), k ≥ 0} and
{1T ∑n−1

k=0 c(k)L̃G(k) X (k), k ≥ 0} are both square
integrable martingales.

Remark 12: Here, Assumption (A3) is a standard assump-
tion on the step size in stochastic approximation. In practice,
different from distributed averaging aiming at estimating the
average of initial values, if the quantity to be estimated
changes over time, then non-vanishing step size is often used.
If the step size c(k) is a sufficiently small constant, then
from (31), one may see that the centroid of the system will
diverge due to the additive noises and thus the mean square
and almost average consensus will not be achieved.

V. SPECIAL CASES

In this section, we consider two special classes of random
graph sequences: (i) {G(k), k ≥ 0} is a Markov chain
with countable state space; (ii) {G(k), k ≥ 0} is an inde-
pendent process with uncountable state space. By the sto-
chastic Lyapunov method based on random graph sequences,
we obtain sufficient conditions for mean square and almost
sure average consensus. For these two special cases, Condi-
tion (b.1) of Theorem 1 becomes more intuitive and Condi-
tion (b.2) is weakened.

A. Markovian Switching Graph Sequence

Definition 2 [45]: A Markov chain on a countable state
space S with a stationary distribution π , and transition prob-
ability function P(x, ·) is called uniformly ergodic, if there
exist positive constants r > 1 and R such that for all x ∈ S,

‖P
n(x, ·) − π‖1 ≤ Rr−n .

Here, ‖P
n(x, ·) − π‖1 =∑y∈S |Pn(x, y) − π(y)|.

Denote S1 = {A j , j = 1, 2, . . .}, which is a countable set
of generalized weighted adjacency matrices and denote the
associated generalized Laplacian matrix of A j by L j . Let

L̂ j = L j+LT
j

2 . In this subsection, we consider the class of
random graph sequences defined by �2 below, each element of
which is a homogeneous and uniformly ergodic Markov chain
with countable states and unique stationary distribution, i.e.

�2 =
{
{G(k), k ≥ 0}|{AG(k), k ≥ 0} ⊆ S1,

and is a homogeneous and uniformly ergodic

Markov chain with unique stationary distributionπ;
E[AG(k)|AG(k−1)] � ON×N , a.s.,

and the associated digraph of E[AG(k)|AG(k−1)]
is balanced a.s., k ≥ 0.

}
.
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Here, π = [π1, π2, . . .]T , π j ≥ 0,
∑∞

j=1 π j = 1, where π j

denotes π(A j ).
We have the following theorem.
Theorem 2: For the system (1)-(2) and the associated ran-

dom graph sequence {G(k), k ≥ 0} ∈ �2, assume that
(i) Assumptions (A1)-(A5) hold;
(ii) the associated graph of the Laplacian matrix

∑∞
j=1 π j L j

contains a spanning tree;
(iii) sup j≥1 ‖L̂ j ‖ < ∞.
Then the system (1)-(2) achieves mean square and almost

sure average consensus.
Proof : Since {AG(k), k ≥ 0} is a Markov chain, by the

Markov property, we know that E[AG(k)|FA(k − 1)] =
E[AG(k)|AG(k−1)]. Thus, {G(k), k ≥ 0} ∈ �1.

By the one-to-one correspondence among AG(k), LG(k) and
L̂G(k), we know that {LG(k), k ≥ 0} and {L̂G(k), k ≥ 0} are
both homogeneous and uniformly ergodic Markov chains with
the unique stationary distribution π , whose state spaces are
S2 = {L1, L2, L3, . . .} and S3 = {L̂1, L̂2, L̂3, . . .}, respec-
tively. From (4), we know that

λh
mh = λ2

{
mh+h−1∑

i=mh

E[L̂G(i)|L̂G(mh−1) = L̂0]
}

= λ2

⎧
⎨

⎩

h∑

i=1

∞∑

j=1

L̂ j P
i (L̂0, L̂ j )

⎫
⎬

⎭
, ∀ L̂0 ∈ S3,

∀ m ≥ 0, h ≥ 1. (46)

Noting the uniform ergodicity of {L̂G(k), k ≥ 0} and the
uniqueness of the stationary distribution π , by Condition (iii),
we have

∥
∥
∥
∥
∥
∥

∑h
i=1
∑∞

j=1 L̂ j P
i (L̂0, L̂ j )

h
−

∞∑

j=1

π j L̂ j

∥
∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥

∑h
i=1
∑∞

j=1(L̂ j P
i (L̂0, L̂ j ) − π j L̂ j )

h

∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥

∑h
i=1
∑∞

j=1 L̂ j (P
i (L̂0, L̂ j ) − π j )

h

∥
∥
∥
∥
∥

≤ sup
j

‖L̂ j ‖
∑h

i=1 Rr−i

h
→ 0, h → ∞.

Furthermore, by the definition of uniform convergence,
we know that

1

h

[
mh+h−1∑

i=mh

E[L̂G(i)|L̂G(mh−1)]
]

converges to
∞∑

j=1

π j L̂ j a.s.,

uniformly with respect to m, as h → ∞. Denote α =
λ2(
∑∞

j=1 π j L̂ j ). By Condition (ii), it follows that α > 0.
Since the function λ2(·), whose arguments are matrices,
is continuous, we know that for the given α

2 , there exists
a constant δ > 0 such that for any given Laplacian
matrix L, |λ2(L) − λ2(

∑∞
j=1 π j L̂ j )| ≤ α

2 , provided ‖L −
∑∞

j=1 π j L̂ j‖ ≤ δ. Since the convergence is uniform,

there exists a positive integer h0 such that ‖ 1
h [∑mh+h−1

i=mh

E[L̂G(i)|L̂G(mh−1)]] − ∑∞
j=1 π j L̂ j‖ ≤ δ, h ≥ h0,

a.s., which leads to |λ2(
1
h [∑mh+h−1

i=mh E[L̂G(i)|L̂G(mh−1)]]) −
λ2(
∑∞

j=1 π j L̂ j )| ≤ α
2 , h ≥ h0, a.s. Thus,

λ2

(
1

h

[
mh+h−1∑

i=mh

E[L̂G(i)|L̂G(mh−1)]
])

≥ α

2
> 0, a.s.

Then, by (46), we have λh
mh ≥ hα

2 > 0, h ≥ h0 a.s. Thus,
Condition (b.1) of Theorem 1 holds. Then, by Condition (iii),
we know that Condition (b.2) of Theorem 1 holds. Finally,
by Theorem 1, we get the conclusion of the theorem. �

B. Independent Graph Sequence

Consider the independent graph sequence

�3 =
{
{G(k), k ≥ 0}|{G(k), k ≥ 0}

is an independent process, E[AG(k)] � ON×N , a.s.

and the associated digraph of E[AG(k)]
is balanced a.s., k ≥ 0

}
.

We have the following theorem.
Theorem 3: For the system (1)-(2) and the associated ran-

dom graph sequence {G(k), k ≥ 0} ∈ �3, assume that
(i) Assumptions (A1)-(A5) hold;
(ii) there exists a positive integer h such that

inf
m≥0

⎧
⎨

⎩
λ2

⎡

⎣
(m+1)h−1∑

i=mh

E[L̂G(i)]
⎤

⎦

⎫
⎬

⎭
> 0;

(iii) supk≥0 E
[‖LG(k)‖2

]
< ∞.

Then the system (1)-(2) achieves mean square and almost
sure average consensus.

Proof : From G(k) ∈ �3, we know that G(k) ∈ �1,
and E[L̂G(k)] is positive semi-definite. By the indepen-
dence of {G(k), k ≥ 0}, we have E[AG(k)|FA(k − 1)] =
E[AG(k)], E[LG(k)|FA(k − 1)] = E[LG(k)], which together
with Assumption (A5) gives

E

[

δT (k)
LT
G(k) PT

N + PN LG(k)

2
δ(k)

]

= E

[

δT (k)E

[ LT
G(k) PT

N + PN LG(k)

2

∣
∣
∣
∣Fξ,A(k − 1)

]

δ(k)

]

= E

[

δT (k)
E[LT

G(k)] + E[LG(k)]
2

δ(k)

]

= E
[
δT (k)E[L̂G(k)]δ(k)

]
≥ 0.

Then, similar to the proof of Step 1 of Theorem 1, we get that

E[V (k)] is bounded. Denote supk≥0
[
E[‖LG(k)‖2]] 1

2 by ρ4.
Since LG(i) is independent of LG( j ), i �= j , we do not have
to use the conditional Hölder inequality as in (19). Here,
by the conditional Lyapunov inequality and Condition (iii),
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we have supk≥0 E[‖LG(k)‖] ≤ supk≥0{E[‖LG(k)‖2]} 1
2 ≤ ρ4.

Then, similar to (19), we obtain

E
[∥
∥
∥�T ((m + 1)h, mh)�((m + 1)h, mh)

− IN +
(m+1)h−1∑

i=mh

c(i)(PN LG(i) + LT
G(i) PT

N )
∥
∥
∥
]

≤
(

C1

2h∑

i=2

Mi
2hρi

4

)
c2((m + 1)h)

= C1[(1 + ρ4)
2h − 1 − 2hρ4]c2((m + 1)h).

Also, by the independence of {G(k), k ≥ 0} and Condition (ii),
similarly to (20), we have

E

[

δT (mh)

(m+1)h−1∑

i=mh

c(i)

[

PN LG(i)

+ LT
G(i) PT

N

]

δ(mh)

]

= 2E

⎡

⎣δT (mh)

⎛

⎝
(m+1)h−1∑

i=mh

c(i)E[L̂G(i)]
⎞

⎠ δ(mh)

⎤

⎦

≥ 2c((m + 1)h) inf
m≥0

⎧
⎨

⎩
λ2

⎡

⎣
(m+1)h−1∑

i=mh

E[L̂G(i)]
⎤

⎦

⎫
⎬

⎭

× E[V (mh)].
Then, similarly to the proof of Step 2 of Theorem 1, we get
E[V (k)] → 0, k → ∞.

By the independence of G(k), k ≥ 0 and Assumption (A5),
we know that the adaptive sequences {1T

N

∑n
j=0 c(k)DG(k)

Y (k)ξ(k), Fξ,A(n), n ≥ 0} and {1T
N

∑n
k=0 c(k)L̃G(k) X (k),

Fξ,A(n), n ≥ 0} are both martingale sequences. Then, similar
to Steps 1, 2 and 3 of Theorem 1, we get the conclusion of
the theorem. �

Remark 13: In Theorem 3, the associated digraph of
E[AG(k)], i.e., the mean graph at each time instant, is balanced,
so the symmetrized mean graph is undirected. Condition (ii)
of Theorem 3 means that the symmetrized mean graphs
are jointly-connected (the mean graph has a spanning tree)
over consecutive fixed-length time intervals and the average
algebraic connectivity is uniformly positive bounded away
from zero.

The gossip algorithm [16] is a special distributed averaging
algorithm with a sequence of i.i.d network graphs. For dis-
tributed averaging algorithms with a sequence of i.i.d network
graphs, the mean square steady-state error can be estimated
more precisely with sufficiently small initial algorithm gains.
Moreover, the almost sure convergence rate of the n-step mean
consensus error can be estimated.

Consider the i.i.d graph sequence

�4 =
{
{G(k), k ≥ 0}|{G(k), k ≥ 0}
is an i.i.d process with E[AG(0)] � ON×N , and

the associated digraph of E[AG(0)] is balanced.
}
.

Theorem 4: For the system (1)-(2) and the associated ran-
dom graph sequence G(k) ∈ �4, assume that

(i) Assumptions (A1)-(A5) hold;
(ii) the associated digraph of the Laplacian matrix E[LG(0)]

has a spanning tree;
(iii) E

[‖LG(0)‖2
]

< ∞.
Then, all states xi (k), i ∈ V , converge to a common random

variable x∗, in mean square and almost surely, with E(x∗) =
1
N

∑N
j=1 x j (0) and

V ar(x∗) ≤ 4cβb2ρ̄1

N2 + 8̃cβσ 2ρ̄1

N2 + 2cρ̄2 qx

N
,

where b, σ , c, c̃, qx are constants defined in (5) and

ρ̄1 = E

[

|EG(0)| max
1≤i, j≤N

a2
i j (0)

]

,

ρ̄2 = max
1≤i≤N

E

⎡

⎢
⎣

⎛

⎝
N∑

j=1

ai j (0) −
N∑

j=1

a j i(0)

⎞

⎠

2
⎤

⎥
⎦ .

The convergence rate of n-step mean consensus error is
estimated by

1

n

n∑

k=0

‖δ(k)‖ = o

(
1√

c(n)n

)

a.s. (47)

Furthermore, if the initial algorithm gain is so small that

c(0) <
2λ2

(
E[L̂G(0)]

)

E
[‖LG(0)‖2

]+ 4σ 2βρ̄1
, (48)

then

c̃ ≤ c(0)E[V (0)] + 2b2βρ̄1
∑∞

k=0 c3(k)

2λ2

(
E[L̂G(0)]

)
− (E [‖LG(0)‖2

]+ 4σ 2βρ̄1
)

c(0)
.

(49)

Proof : It is obvious that �4 ⊆ �3, so G(k) ∈ �3. By Con-
dition (ii) and G(k) ∈ �4, we know that λ2

(
E[L̂G(0)]

)
> 0

and Condition (ii) of Theorem 3 holds with h = 1. Obviously,
Condition (iii) together with G(k) ∈ �4 implies Condition (iii)
of Theorem 3. Then, by Theorem 3, the closed-loop system
achieves mean square and almost sure average consensus.
From (8), we have

E[V (k + 1)|Fξ,A(k)]
≤ V (k) − 2c(k)λ2(E[L̂G(0)])V (k)

+ E[‖LG(0)‖2]c2(k)V (k)

+ 4σ 2βρ̄1c2(k)V (k) + 2b2βρ̄1c2(k) a.s., (50)

which together with λ2

(
E[L̂G(0)]

)
> 0 and Lemma A.2

leads to

∞∑

k=0

c(k)V (k) < ∞ a.s. (51)
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Then, by Assumption (A4) and Kronecker lemma ( [42]),
we have

lim
n→∞ c(n)

n∑

k=0

V (k) = 0 a.s.,

which together with Cauchy inequality
∑n

k=0 ‖δ(k)‖ ≤√
n
√∑n

k=0 V (k) results in (47).
From (50), we have

E[V (k + 1)]
≤ E[V (k)] − 2c(k)λ2(E[L̂G(0)])E[V (k)]

+ E[‖LG(0)‖2]c2(k)E[V (k)]
+ 4σ 2βρ̄1c2(k)E[V (k)] + 2b2βρ̄1c2(k).

Then, by Assumption (A4), we have

(2λ2(E[L̂G(0)]) − E[‖LG(0)‖2]c(0)

− 4σ 2βρ̄1 c(0))c2(k)E[V (k)]
≤ c(k)E[V (k)] − c(k + 1)E[V (k + 1)] + 2b2βρ̄1c3(k).

Taking summation on both sides of the above inequality from
k = 0 to k = n gives

(2λ2(E[L̂G(0)]) − E[‖LG(0)‖2]c(0)

− 4σ 2βρ̄1 c(0))

n∑

k=0

c2(k)E[V (k)]

≤ c(0)E[V (0)] − c(n + 1)E[V (n + 1)]

+ 2b2βρ̄1

n∑

k=0

c3(k).

Then, by (48) and let n → ∞, we have (49). �
Remark 14: Theorem 4 shows that if the step size c(k) =

�

(
lnβ

(k)
kγ

)

, γ ∈ (0.5, 1] and β ≥ −1, then the n-step mean

consensus error is o

(
1√

n1−γ lnβ
n

)

almost surely under the

i.i.d graph sequence. Here, Theorem 4 only gives a rough
estimate of the convergence rate of n-step mean consensus
error in the sense that if c(k) = �(1/k), then the trivial
estimate o(1) is given. To get the exact convergence rate of
the consensus error in probability one is challenging. Some
preliminary results have been presented in [47] for the case
with only additive noises and fixed network graph, especially,

if c(k) = �(1/k), it was shown that ‖δ(k)‖ = O

(√
lnlnk

k

)

a.s., provided the algebraic connectivity of the network graph
is sufficiently large [47].

VI. NUMERICAL EXAMPLES

We consider a simple random multi-agent network with
three nodes, whose states are x1(k), x2(k) and x3(k), k ≥ 0,
respectively. The initial values are given by x1(0) = 9,
x2(0) = 7, x3(0) = 6. At each time instant, the network
graph has six random edges. Here, the noise intensity function

Fig. 1. Trajectories of states when h = 1.

f j i (x j (k)− xi (k)) = σ |xi(k)− x j (k)|+ b, i, j = 1, 2, 3. Take
c(k) = 1

k . Then by the algorithm (1)-(2), the state updating
rule is given by

x1(k + 1) = x1(k) + 1

k

∑

i=2,3

a1i (k)
(

xi(k) − x1(k)

+ σ |xi (k) − x1(k)|ξi1(k) + bξi1(k)
)
,

x2(k + 1) = x2(k) + 1

k

∑

i=1,3

a2i (k)
(

xi (k) − x2(k)

+ σ |xi (k) − x2(k)|ξi2(k) + bξi2(k)
)
,

x3(k + 1) = x3(k) + 1

k

∑

i=1,2

a3i (k)
(

xi(k) − x3(k)

+ σ |xi (k) − x3(k)|ξi3(k) + bξi3(k)
)
.

The random weights {ai j (k), i, j = 1, 2, 3, k ≥ 0} are selected
by the following rules. For some positive integer h, when k =
mh, m ≥ 0, the random weights are uniformly distributed on
the interval [0, 1]; when k �= mh, m ≥ 0, the random weights
are uniformly distributed on [−0.5, 0.5]. So, here, the random
weights may be negative at some time instants. Here, {ai j (k),
i, j = 1, 2, 3, k ≥ 0} are spatially and temporally independent.
Then the conditional graph degenerates to the mean graph.
It can be verified that when k = mh, m ≥ 0, the mean
graph is balanced and connected and when k �= mh, m ≥ 0,
the mean graphs are empty. Thus, the mean graphs are jointly
connected on the time interval [mh, (m + 1)h). Assume that
the communication noises {ξ j i(k), i, j = 1, 2, 3, k ≥ 0} are
independent standard normally distributed random variables
and independent of the random graphs. Let σ = 0.1 and
b = 0.1. By Theorem 3, the states of these nodes would
asymptotically converge to a random variable whose math-
ematical expectation is the average of initial values.

Now we demonstrate that the states of the agents agree
asymptotically. Take h = 1, 2, 3, and the states of agents
are shown in Figures 1, 2 and 3, respectively. It is shown
that the agreement is asymptotically achieved and smaller h
(the length of the intervals over which the network graphs are
jointly connected) gives faster convergence. Take h = 1 and
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Fig. 2. Trajectories of states when h = 2.

Fig. 3. Trajectories of states when h = 3.

Fig. 4. Trajectories of ‖δ(k)‖
√

k+1
ln(1+ln(k+2))

when h = 1.

the trajectory of ‖δ(k)‖
√

k+1
ln(1+ln(k+2))

is shown in 4, from
which one may see that the convergence rate is no slower
than O

(
lnlnk

k

)
.

VII. CONCLUSION

We have considered discrete-time stochastic approximation
type distributed averaging algorithms with random measure-
ment noises and time-varying random graphs. Compared with

the existing literature, our model is more widely applicable
in the sense that i) the measurement covers both additive
and multiplicative noises; ii) the network graphs and noises
are not required to be spatially and temporally independent;
iii) the edge weights of network graphs are not necessarily
nonnegative with probability one. By further developing sto-
chastic Lyapunov method and the combination of algebraic
graph theory and martingale convergence theory, sufficient
conditions have been given to achieve mean square and almost
sure average consensus. It has been shown that all states
of agents converge to a common variable in mean square
and almost surely if the graph sequence is conditionally
balanced and uniformly conditionally jointly connected. The
mathematical expectation of the common random variable is
just the average of initial values. Moreover, an upper bound of
the mean square steady-state error has been given in relation to
the edge weights, the time-varying algorithm gain, the number
of agents, the agents’ initial values, the second-order moment
and the intensity coefficients of noises. Especially, if the mea-
surement noises are both spatially and temporally independent,
then the mean square steady-state error vanishes as the number
of nodes increases to infinity under mild conditions on the
network graphs.

Convergence rate is an important performance for dis-
tributed averaging algorithms. Different from the fixed-gain
algorithms for noise-free cases [19], [30], [48], here, the
non-zero off-diagonal elements of the closed-loop state matrix
are not uniformly bounded away from zero, which results in
much more difficulties to get the exact stochastic convergence
rates of the algorithm. For the case with a sequence of i.i.d
random graphs, we have given a rough estimate for the n-step
mean consensus error with probability one. It is interesting to
develop effective tools to give the exact stochastic convergence
rates of our algorithms.

APPENDIX

In this paper, the following basic inequalities will be used.
For the conditional Lyapunov inequality and the conditional
Hölder inequality, the readers may be referred to Theo-
rem 6.4 and its next paragraph in [49, Ch. 6].

Denote the probability space by (�,F , P). Let F1 be a sub
σ -algebra of F .

Conditional Lyapunov inequality. Let ξ be a random vari-
able on (�,F , P). Then

(E[|ξ |s |F1])1/s ≤ (E[|ξ |t |F1])1/t a.s., 0 < s < t .

Conditional Hölder inequality. Let ξ and η be two random
variables on (�,F , P). Let constants p ∈ (1,∞), q ∈ (1,∞)
and 1/p + 1/q = 1. If E[|ξ |p] < ∞ and E[|η|q] < ∞, then

E[|ξη||F1] ≤ (E[|ξ |p|F1])1/p(E[|η|q |F1])1/q a.s.

If F1 is the trivial σ -algebra {�,�}, then the conditional
Lyapunov inequality and conditional Hölder inequality degen-
erate to the usuanl Lyapunov inequality and Hölder inequality,
respectively.

Cr-inequality. Let ai ≥ 0, i = 1, 2, . . . , n. Then(∑n
i=1 ai

)r ≤ nr−1∑n
i=1 ar

i , r > 1.
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Lemma A.1: Let {Zk, k ≥ 0} and {Wk, k ≥ 0} be mutually
independent random vector sequences. Then σ(Z j , Z j+1, . . .)
and σ(W j , W j+1, . . .) are conditionally independent given
σ(Z0, . . . , Z j−1, W0, . . . , W j−1), ∀ j ≥ 1.

Proof : Denote Zm∼n = {Zm = zm, . . . , Zn = zn} and
Zm∼∞ = {Zm = zm, Zm+1 = zm+1, . . .} where zk denotes
the possible values of Zk . By the definition of conditional
probability, we have

P{Z j∼∞, W j∼∞|Z0∼ j−1, W0∼ j−1}
= P{W j∼∞|Z0∼ j−1, W0∼ j−1}

× P{Z j∼∞|Z0∼ j−1, W0∼∞}. (A.1)

Noting that σ(Z0∼∞) = σ(σ(Z j∼∞) ∪ σ(Z0∼ j−1)) and
σ(Z0∼∞) is independent of σ(W0∼∞), by [42, Sec. 7.3,
Corollary 3], we have P{Z j∼∞|Z0∼ j−1, W0∼∞} =
P{Z j∼∞|Z0∼ j−1} = P{Z j∼∞|Z0∼ j−1, W0∼ j−1}, which
together with (A.1) gives P{Z j∼∞, W j∼∞|Z0∼ j−1,
W0∼ j−1} = P{W j∼∞|Z0∼ j−1, W0∼ j−1}P{Z j∼∞|Z0∼ j−1,
W0∼ j−1}. By the definition of conditional independence,
we get the conclusion. �

Lemma A.2: [46] Let {x(k),F(k)}, {α(k),F(k)},
{β(k),F(k)} and {γ (k),F(k)} be nonnegative adaptive
sequences satisfying

E(x(k + 1)|F(k)) ≤ (1 + α(k))x(k)−β(k) + γ (k), k ≥0 a.s.,

and
∑∞

k=0(α(k) + γ (k)) < ∞ a.s. then x(k) converges to a
finite random variable a.s., and

∑∞
k=0 β(k) < ∞ a.s.

Lemma A.3: [43] Let {u(k), k ≥ 0}, {q(k), k ≥ 0} and
{α(k), k ≥ 0} be real sequences, where 0 < q(k) ≤ 1,
α(k) ≥ 0, k ≥ 0,

∑∞
k=0 q(k) = ∞, α(k)

q(k) → 0, k → ∞, and
u(k + 1) ≤ (1−q(k))u(k)+α(k). Then lim supk→∞ u(k) ≤ 0.
Especially, if u(k) ≥ 0, k ≥ 0, then u(k) → 0, k → ∞.

Lemma A.4: ( [44]) Let {X (k),F(k)} be a martingale
sequence satisfying supk≥0 E[‖X (k)‖2] < ∞. Then X (k)
converges in mean square and almost surely.
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